Bài giảng Hình Học Lớp 9 - Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn - Đỗ Thị Huyên
Bạn đang xem tài liệu "Bài giảng Hình Học Lớp 9 - Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn - Đỗ Thị Huyên", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
bai_giang_hinh_hoc_lop_9_bai_5_goc_co_dinh_o_ben_trong_duong.ppt
Nội dung text: Bài giảng Hình Học Lớp 9 - Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn - Đỗ Thị Huyên
- HÌNH HỌC 9 GV THỰC HIỆN: ĐỖ THỊ HUYÊN TRƯỜNG: THCS TRỌNG QUAN
- KIỂM TRA BÀI CŨ Gọi tên và nêu công thức tính số đo của các góc được ký hiệu trong mỗi hình vẽ sau: H1 Đỉnh trùng H2 Đỉnh thuộc H3 với tâm đường tròn Đỉnh nằm trong Đỉnh nằm ngoài đường tròn đường tròn
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 1. Góc có đỉnh ở bên trong đường tròn GócGócBEC BEClà cógóc đỉnhcó nằmđỉnh bênở bên trongtrong đườngđườngtròn, trònchắn (O) đượchai cung gọi làAmD góc cóvà BnCđỉnh. ở bên trong đường tròn Số đo góc BEC có quan hệ gì với số đo các cung AmD và BnC?
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 1. Góc có đỉnh ở bên trong đường tròn: Định lí: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. A ?1 GT BEC là góc có đỉnh bên D trong đường tròn E KL sđBEC = sđ BnC+ sđ DmA O 2 B C n
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 1. Góc có đỉnh ở bên ¼ ¼ · sdBC+ sdA D trong đường tròn: Chứng minh BEC = A 2 D E sdBC¼ sdA¼ D BEC· = + O 22 B C BEC· = BDE· + DBE· · BEC là góc ngoài của EBD
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN Bài 36 / 82 sgk Xét đường tròn (O) có: sđ AN+ sđ MB AEF = ; (Tính chất góc có đỉnh ở bên 2 sđ NC+ sđ AM trong đường tròn) AFE = 2 Mà AN = NC, AM = MB (gt) AEF = AFE Tam giác AEF cân tại A
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN Góc có đỉnh ở bên ngoài đường tròn Nhận xét quan hệ về đỉnh, cạnh của góc F với đường tròn? Góc F có: + Đỉnh nằm ngoài đường tròn. + Hai cạnh cắt đường tròn.
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 2. Góc có đỉnh ở bên ngoài đường tròn: m n Số đo góc có đỉnh bên ngoài đường tròn có quan hệ gì với số đo các cung bị chắn?
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 2. Góc có đỉnh ở bên ngoài đường tròn: m n Hình 1 Hình 2 Hình 3 sđ CD - sđ AB sđ BC – sđ AB sđ AmB – sđ AnB F = F = F = 2 2 2 Định lí: Số đo của góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
- §5. GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN GÓC CÓ ĐỈNH Ở BÊN NGOÀI ĐƯỜNG TRÒN 2. Góc có đỉnh ở bên ngoài đường tròn: (sgk) * Định lí: GT BFC là góc có đỉnh bên ngoài đường tròn sđ BC- sđ AD KL SđBFC = 2