Bài giảng Toán số Lớp 10 - Giá trị lượng giác của một cung
Bạn đang xem tài liệu "Bài giảng Toán số Lớp 10 - Giá trị lượng giác của một cung", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_toan_so_lop_10_gia_tri_luong_giac_cua_mot_cung.ppt
Nội dung text: Bài giảng Toán số Lớp 10 - Giá trị lượng giác của một cung
- BÀI GIẢNG ĐẠI SỐ LỚP 10 GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG
- BÀI 2. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG I. GIÁ TRỊ LƯỢNG GIÁC CỦA CUNG α Trên đường tròn lượng giác cho điểm M(x0;y0) sao cho (OA; OM) = α là góc (x0;y0) y0 nhọn. Khi đó: sin = y0 x0 cos = x0
- 1. ĐỊNH NGHĨA Mở rộng khái niệm tỉ số lượng giác cho các cung và góc lượng giác ta có: Trên đường tròn lượng M(x ;y ) giác cho cung AM có 0 0 K sđAM=α và M(x0;y0). Khi đó: sin = y 0 ( y0 = OK ) cos = x H 0 (x0 = OH ) O sin tan = (cos 0) cos cos cot = (sin 0) sin
- 1. ĐỊNH NGHĨA Các giá trị sinα, cosα, tanα, cotα được gọi là M y0 các giá trị lượng giác của cung α. x0 O Ta cũng gọi trục tung là trục sin, trục hoành là trục côsin
- VÍ DỤ VD1: Cho = 0. Tính sin ; cos M(0;1)M(?;?) Bài giải: sin 0 = 0 cos 0 = 1 O M(1;0)M(?;?) VD2 : Cho = . 2 Tính sin ; cos Bài giải: sin = 1 cos = 0 2 2
- 2. HỆ QUẢ M y Cho cung AM=α 0 sin α = y?0 x x cos α = ?0 0 Cho k Z y O sin (α + k2π) = ?0 cos (α + k2π) = ?x0 => sin (α + k2π) = sin α (k Z) cos (α + k2π) = cos α (k Z)
- 2. HỆ QUẢ Quan sát hình vẽ và cho biết giá trị lớn nhất, nhỏ nhất của sinα và cosα -1? ≤ sin α ≤ 1? -?1 ≤ cos α ≤ ?1 Trục sin Trục Trục cos
- 2. HỆ QUẢ Với mọi -1 ≤ m ≤ 1 đều tồn tại α và β sao cho: sin α = m và cos β = m m α m β
- 2. HỆ QUẢ tanα xác định với mọi +kk( Z) 2 cotα xác định với mọi kk( Z)
- 2. HỆ QUẢ Dấu của các giá trị lượng giác của góc α phụ thuộc vào điểm cuối của cung AM=α trên đường tròn lượng giác Bảng xác định dấu của các giá trị lượng giác: + + - - + sin Trục + + + - - - Trục cos + - + - + - + - -
- 3. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG ĐẶC BIỆT Bảng giá trị lượng giác của các cung đặc biệt 0 1 1 0 0 || || 0
- II. Ý NGHĨA HÌNH HỌC CỦA TANG VÀ CÔTANG 1. Ý nghĩa hình học của tanα: tan = AT
- II. Ý NGHĨA HÌNH HỌC CỦA TANG VÀ CÔTANG 2. Ý nghĩa hình học của cotα: cot = B S
- CỦNG CỐ Trên đường tròn lượng M(x0; y0) y giác cho cung AM = α 0 Khi đó: sin = y0 cos = x0 x sin 0 O tan = (sin 0) cos cos cot = (cos 0) sin Các giá trị sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của cung α.
- CỦNG CỐ sin (α + k2π) = sin α (k Z) -1? ≤ sin α ≤ 1? cos (α + k2π) = cos α -1? ≤ cos α ≤ 1? Với mọi -1 ≤ m ≤ 1 đều tồn tại α và β sao cho: sin α = m và cos β = m tanα xác định khi: +kk( Z) 2 cotα xác định khi: kk( Z) Dấu của các giá trị lượng giác của góc α phụ thuộc vào điểm cuối của cung AM=α trên đường tròn lượng giác
- THANK YOU