Bài giảng Đại số Lớp 9 - Chương 4, Bài 4: Công thức nghiệm của phương trình bậc hai. Luyện tập
Bạn đang xem tài liệu "Bài giảng Đại số Lớp 9 - Chương 4, Bài 4: Công thức nghiệm của phương trình bậc hai. Luyện tập", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_dai_so_lop_9_chuong_2_bai_4_cong_thuc_nghiem_cua_p.ppt
Nội dung text: Bài giảng Đại số Lớp 9 - Chương 4, Bài 4: Công thức nghiệm của phương trình bậc hai. Luyện tập
- Bài §4,5: Công thức nghiệm của phương trình bậc hai Luyện tập
- 1. Công thức nghiệm của phương trình bậc hai Đối với phương trình ax2 + bx +c = 0 (a ≠ 0) và biệt thức = b2 - 4ac • Nếu > 0 thì phương trình có hai nghiệm phân biệt , • Nếu = 0 thì phương trình có nghiệm kép • Nếu < 0 thì phương trình vô nghiệm.
- Các bước giải phương trình bậc hai Bước 1: Xác định các hệ số a, b, c Bước 2: Tính . Rồi so sánh với số 0 Bước 3: Xác định số nghiệm của phương trình Bước 4: Tính nghiệm theo công thức (nếu có)
- ?3 Áp dụng công thức nghiệm để giải các phương trình: a, 5x2 – x + 2 = 0 b, 4x2 – 4x + 1 = 0 c, -3x2 + x + 5 = 0 d, 3x2 – 2x - 8 = 0 ĐÁP ÁN a)5x2 - x + 2 = 0 (a = 5, b = -1, c = 2) = b2- 4ac = (-1)2- 4.5.2 = 1 - 40 = -39 < 0 a) Phương trình vô nghiệm.
- b) 4x2 – 4x + 1 = 0 Cách 2 2 (a = 4; b = - 4; c = 1) b) 4x – 4x + 1 = 0 = (- 4)2 – 4.4.1 = 16 – 16 = 0 Phương trình có nghiệm kép x1 = x2 Phương trình có nghiệm
- ĐÁP ÁN c) - 3x2 + x + 5 = 0 (a = -3; b = 1; c = 5) = 12 – 4.(- 3).5 = 1 + 60 = 61 > 0 Phương trình có hai nghiệm phân biệt: d, 3x2 – 2x - 8 = 0 ( a = 3; b = -2; c = -8 = (-2)2 – 4.3.(-8) = 4 + 96 = 100 > 0; Phương trình có hai nghiệm phân biệt: x1 = 2; x2 = - 4/3
- Chú ý: Nếu phương trình ax2 + bx + c = 0 (a ≠ 0 ) có a và c trái dấu thì ac 0 Phương trình có 2 nghiệm phân biệt
- 2. Công thức nghiệm thu gọn: ĐốiĐối vớivới phươngphương trìnhtrình axax22 ++ bxbx ++ cc == 00 (a(a ≠≠ 0)0) vvàà bb == 2b’,2b’, ∆’∆’ == b’b’22 –– ac.ac. •Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt: • Nếu ∆’ = 0 thì phương trình có nghiệm kép: • Nếu ∆’ < 0 thì phương trình vô nghiệm.
- CôngCông thứcthức nghiệmnghiệm ((tổngtổng quátquát)) CôngCông thứcthức nghiệmnghiệm thuthu gọngọn củacủa củacủa phươngphương trìnhtrình bậcbậc haihai phươngphương trìnhtrình bậcbậc haihai ĐốiĐối vớivới PT:PT: axax22 ++ bxbx ++ cc == 00 ĐốiĐối vớivới PT:PT: axax22 ++ bxbx ++ cc == 00 (a(a ≠≠ 0),0), ∆ = b2 – 4ac (a(a ≠≠ 0)0) vàvà bb == 2b’2b’,, ∆’∆’ == b’b’22 –– acac Nếu ∆ > 0 thì phương trình có 2 nghiệm Nếu ∆’ > 0 thì phương trình có 2 nghiệm phân biệt: phân biệt: Nếu ∆’ = 0 thì phương trình có nghiệm Nếu ∆ = 0 thì phương trình có nghiệm kép: kép: Nếu ∆ < 0 thì phương trình vô Nếu ∆’ << 00 thì phương trình vô nghiệm nghiệm.
- Dùng công thức nghiệm (tổng quát) Dùng công thức nghiệm thu gon Do đó phương trình có hai Do đó phương trình có hai nghiệm phân biệt: nghiệm phân biệt:
- PT vô nghiệm Tính = b2 - 4ac PT có nghiệm kép PT có hai nghiệm Xác định các Phân biệt hệ số a, b, c