Bài giảng Đại số Lớp 7 - Chương 1, Bài 9: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn

ppt 17 trang buihaixuan21 5620
Bạn đang xem tài liệu "Bài giảng Đại số Lớp 7 - Chương 1, Bài 9: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptbai_giang_dai_so_lop_7_chuong_1_bai_9_so_thap_phan_huu_han_s.ppt

Nội dung text: Bài giảng Đại số Lớp 7 - Chương 1, Bài 9: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn

  1. Thế nào là số hữu tỉ? ? Số 0, 323232 có phải là số hữu tỉ không?
  2. 1, Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn: Ví dụ 1: Viết các phân số 3 37 dưới dạng số 20 ; 25 thập phân.
  3. 1, Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn: 5 Ví dụ 2: Viết phân số dưới dạng số thập phân. 12
  4. 1, Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn: Viết các phân số 1 -17 dưới dạng số thập phân 9 ; 11 và chỉ ra chu kì của nó.
  5. 2. Nhận xét: • Nếu một phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn. • Nếu một phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
  6. - 6 Ví dụ 1: Phân số viết được dưới dạng số thập 75 phân hữu hạn không? Vì sao? - 6 Phân số 75 viết được dưới dạng số thập phân hữu hạn vì: - 6 - 2 + = là phân số tối giản. 75 25 + Mẫu 25 = 52 không có ước nguyên tố khác 2 và 5. - 6 -2 Ta có = = -0,08 75 25
  7. 7 Ví dụ 2: Phân số 30 viết được dưới dạng số thập phân vô hạn tuần hoàn không? Vì sao? 7 Phân số viết được dưới dạng số thập phân vô 30 hạn tuần hoàn vì: 7 + là phân số tối giản. 30 + Mẫu 30 = 2.3.5 có ước nguyên tố khác 2 và 5. 7 Ta có = 0,2333 = 0,2(3) 30
  8. Trong các phân số sau đây phân số nào viết được ? dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuân hoàn? Viết dạng thập phân của các phân số đó. 1 -5 13 -17 11 7 ; ; ; ; ; 4 6 50 125 45 14
  9. Trong các phân số sau đây phân số nào viết được ? dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuân hoàn? Viết dạng thập phân của các phân số đó. 1 -5 13 -17 11 7 ; ; ; ; ; 4 6 50 125 45 14 Giải Các phân số viết được dưới dạng số thập phân hữu hạn là: 1 13 -17 7 1 ; ; ; = 4 50 125 14 2 Các phân số viết được dưới dạng số thập phân vô hạn tuần hoàn là: -5 11 ; 6 45
  10. Dạng thập phân của các phân số: 1 13 = 0,25 = 0,26 4 50 -17 7 1 = -0,136 = = 0,5 125 14 2 -5 11 =-0,8(3) = 0,2(4) 6 45
  11. Ví dụ: 1 0,(4) = 0,(1).4 = . 4 = 4 9 9 Số 0, 323232 có phải là số hữu tỉ không?
  12. Mỗi số hữu tỉ được biểu diễn bởi một số thập phân hữu hạn hoặc vô hạn tuần hoàn. Ngược lại, mỗi số thập phân hữu hạn hoặc vô hạn tuần hoàn biểu diễn một số hữu tỉ.
  13. Bài 67 SGK trg34 3 Cho A = 2. Hãy điền vào ô vuông một số nguyên tố có một chữ số để A viết được dưới dạng số thập phân hữu hạn. Có thể điền mấy số như vậy? Giải Có thể điền được 3 số: 3 3 A = = 2. 2 4 3 1 A = = 2. 3 2 3 3 A = = 2. 5 10
  14. Nhận biết một phân số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn: • Viết phân số dưới dạng phân số tối giản với mẫu dương. • Phân tích mẫu dương đó ra thừa số nguyên tố • Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dạng số thập phân hữu hạn. Mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phận vô hạn tuần hoàn.
  15. Hướng dẫn về nhà: - Nắm vững điều kiện để một phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. - Học thuộc kết luận về quan hệ giữa số hữu tỉ và số thập phân - Bài về nhà 65, 66, 68, 70, 71 SGK trg 34, 35.
  16. Bài tập 65/SGK /34 Giải thích vì sao các phân số sau viết được dưới dạng số thập phân hữu hạn rồi viết chúng dưới dạng đó: 3 − 7 13 −13 ; ; ; 8 5 20 125 Giải Các phân số trên viết được dưới dạng số thập phân hữu hạn vì các phân số đó tối giản, có mẫu dương và mẫu không có ước nguyên tố khác 2 và 5. 3 − 7 = 0,375 ; = −1,4 8 5
  17. Bài tập 66/SGK /34 Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó: 1 − 5 4 − 7 ; ; ; 6 11 9 18 Giải Các phân số trên viết được dưới dạng số thập phân vô hạn tuần hoàn vì các phân số đó tối giản, có mẫu dương và mẫu có ước nguyên tố khác 2 và 5. 1 − 5 = 0,1(6) ; = −0,(45) 6 11