Bài giảng Đại số Lớp 7 - Chương 4, Bài 4: Đơn thức đồng dạng - Nguyễn Hùng Vương
Bạn đang xem tài liệu "Bài giảng Đại số Lớp 7 - Chương 4, Bài 4: Đơn thức đồng dạng - Nguyễn Hùng Vương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_dai_so_lop_7_chuong_4_bai_4_don_thuc_dong_dang_ngu.pptx
Nội dung text: Bài giảng Đại số Lớp 7 - Chương 4, Bài 4: Đơn thức đồng dạng - Nguyễn Hùng Vương
- TRƯỜNG THCS PHÚ HỮU HƯỚNG DẪN HỌC TẬP MÔN TOÁN 7 BÀI 4 ĐƠN THỨC ĐỒNG DẠNG GV: NGUYỄN HÙNG VƯƠNG
- Bài tập: Thu gọn các đơn thức sau, chỉ rõ phần biến, phần hệ số của các đơn thức đã thu gọn. 1 2 1 x y 4xy = . 4 . x2. x . (y. y) = 2x3 y2 2 2 32 Hệ số là 2, phần biến là xy − 5 2 −5 xy3x y = . 3 . x. x2 . (y. y) = −5x3 y2 3 3 Hệ số là – 5, phần biến là
- 2x3y2 ; -5x3y2 Có nhận xét gì về phần hệ số và phần biến của hai Phần hệ số Phần biến đơn thức trên? Khác 0 Giống nhau
- Bài 4: ĐƠN THỨC ĐỒNG DẠNG 1. Đơn thức đồng dạng ?1 Cho đơn thức 3x2yz. a) Hãy viết ba đơn thức có phần biến giống phần biến đã cho b) Hãy viết ba đơn thức có phần biến khác phần biến đã cho 3xyz 6x2yz 7xyz
- Tiết 54 - Bài 4: ĐƠN THỨC ĐỒNG DẠNG 1. Đơn thức đồng dạng a. Định nghĩa Vậy thế nào là hai Hai đơn thức đồng dạng đơn thức đồng là hai đơn thức có hệ số dang? khác 0 và có cùng phần biến. b. Ví dụ: Cho ví dụ về đơn thức đồng dạng ? 5x3y2; -3x3y2 và 2,3x3y2 là các đơn thức đồng dạng. c. Chú ý: -6 = - 6x0 0 7 = 7 x Hai số: -6 và 7 có Các số khác 0 được coi là phải là hai đơn những đơn thức đồng dạng. thức đồng dạng không? Vì sao?
- Tiết 54 - Bài 4: ĐƠN THỨC ĐỒNG DẠNG 1. Đơn thức đồng dạng ?2 a. Định nghĩa: Khi thảo luận nhóm, bạn Sơn nói: Hai đơn thức đồng dạng “0,9xy2 và 0,9x2y là hai đơn thức đồng là hai đơn thức có hệ số dạng”. Bạn Phúc nói: ‘‘Hai đơn thức khác 0 và có cùng phần biến. trên không đồng dạng”. Ý kiến của em? b. Ví dụ: 5x3y2; -3x3y2 và 2,3x3y2 là các đơn thức đồng dạng. c. Chú ý: Các số khác 0 được coi là những đơn thức đồng dạng. Hai đơn thức này không đồng dạng vì không cùng phần biến.
- Các đơn thức cùng bậc thì đồng dạng Đúng hay Sai? SAI Chẳng hạn : 3x2y và xy2 cùng có bậc 3 nhưng chúng không đồng dạng
- Các đơn thức đồng dạng thì cùng bậc Đúng hay Sai? ĐÚNG
- Bài tập 15 tr 34 – SGK. Sắp xếp các đơn thức sau thành từng nhóm các đơn thức đồng dạng. 5 x2y ; xy2 ; 1 x2y ; 2xy2 ; x2y ; 3 2 1 xy2 ; 2 x2y ; xy 4 5 Giải 2 2 Nhóm 1: 5 x2y ; 1 x2y ; x2y ; x y 3 2 5 Nhóm 2: xy2 ; 2xy2 ; 1 xy2 4
- Các đơn thức: yxy2 ; 3y2xy; -5yxy2 có đồng dạng với nhau hay không? Có Vì: yxy2 = xy3 3y2xy = 3xy3 -5yxy2 = -5xy3 nên các đơn thức đã cho đồng dạng với nhau.
- Bài tập: Hãy chọn phương án đúng. 1. Đơn thức 2x2y có phần biến giống phần biến của đơn thức: A. 2xy2 B. -3xy C. 5x2y D. 7x2y2 2. Đơn thức -3x2y đồng dạng với đơn thức A. xy2 B. -53xy C. 2x2y D. x2y2 3. Đơn thức yx2y2 đồng dạng với đơn thức A. 0x2y3 B. 7x2y2 C. 5xy D. 8x2y3 4. Đơn thức -5y3x2 đồng dạng với đơn thức: A. -5y3x ; B. 4xy3; C. 2x2y3; D. xy3
- Tiết 54 - Bài 4: ĐƠN THỨC ĐỒNG DẠNG 2. Cộng, trừ các đơn thức đồng dạng Cho A = 3.72.20 và B = 2.72.20 Dựa vào tính chất phân phối của a. Ví dụ 1: phép nhân đối với phép cộng để 3x2y + x2y = (3+1)x2y = 4x2y tính A+B. Ta nói 4x2y là tổng của hai đơn thức ?A+B3 = 3.72.20 + 2.72.20 3x2y và x2y = (3+2).72.20 Hãy tìm tổng của ba đơn thức : = 5.72.20 b. Ví dụ 2: xy3 ; 5xy3 ; -7xy3 7x2y – 4x2y = (7 - 4)x2y = 3x2y Ta nói 3x2y là hiệu của hai đơn thức Để cộng (hay trừ) các đơn thức đồng dạng ta làm như thế nào? 7x2y và 4x2y xy3 + 5xy3 + (-7xy3 ) Để cộng (hay trừ) các đơn = (1+ 5 - 7)xy3 thức đồng dạng, ta cộng (hay = - xy3 trừ) các hệ số với nhau và giữ nguyên phần biến.
- BÀI TẬP Điền đơn thức thích hợp vào ô trống: a) 2xy2 + 3xy 2 = 5xy2 b) -3xy - 4xy = -7xy c) 2xyz - 6xyz = -4xyz
- Bài tập 17- sgk tr 35 Tính giá trị của biểu thức sau tại x =1 và y = - 1 13 x5 y−+ x 5 y x 5 y 24 Giải 15 3 5 5 1 3 5 3 5 x y− x y + x y = − +1 x y = x y 2 4 2 4 4 Thay x = 1 và y = -1 vào biểu thức trên ta được: 33− .15 .(−= 1) 44 Vậy tại x =1 và y = -1 giá trị của biểu thức −3 bằng 4
- HƯỚNG DẪN TỰ HỌC * Đối với bài học ở tiết này: - Cần nắm vững thế nào là hai đơn thức đồng dạng. - Làm thành thạo phép cộng, trừ các đơn thức đồng dạng. - Bài tập 16;18;19;20;21;22;23SGK /35;36 * Đối với bài học ở tiết tiếp theo: - Xem trước bài 5. Đa thức