Bài giảng Đại số Lớp 8 - Chương 2, Bài 1: Phân thức đại số - Năm học 2019-2020 - Cao Thị Thúy Nga

ppt 25 trang buihaixuan21 6090
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Đại số Lớp 8 - Chương 2, Bài 1: Phân thức đại số - Năm học 2019-2020 - Cao Thị Thúy Nga", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptbai_giang_dai_so_lop_8_chuong_2_bai_1_phan_thuc_dai_so_nam_h.ppt

Nội dung text: Bài giảng Đại số Lớp 8 - Chương 2, Bài 1: Phân thức đại số - Năm học 2019-2020 - Cao Thị Thúy Nga

  1. NhiÖt liÖt chµo mõng c¸c thÇy c« gi¸o vÒ dù giê líp 8A1 TIẾT 21: PHÂN THỨC ĐẠI SỐ Giáo viên: Cao Thị Thúy Nga
  2. KHỞI ĐỘNG 1/ Em hãy cho biết phân số được viết dưới dạng như thế nào? a Phân số được viết dưới dạng ;(a , b Z ), b 0 b 2/ Các biểu thức sau có đặc điểm chung gì? Tử và mẫu ở dạng nào mà các em đã biết ? 47x − a) 3 2xx+− 4 5 Những biểu thức như này có tên gọi là 15 => vào bài mới, chương mới . b) 3xx2 −+ 7 8 x −12 c) 1
  3. TIẾT 21: Ph©n thøc ®¹i sè Phân thức đại số được tạo Phân số ? thành từ . được tạo thành từ số nguyên
  4. TIẾT 21: Ph©n thøc ®¹i sè Phân thức đại số được tạo Phân số ? thành từ .®a thøc được tạo thành từ số nguyên
  5. Thø hai ngµy 4 th¸ng 11 n¨m 2019 CHƯƠNG II : ph©n thøc ®¹i sè TIẾT 21: PHÂN THỨC ĐẠI SỐ 1. Định nghĩa : A Quan sát các biểu thức có dạng Một phân thức đại số (phân thức) là B A sau đây: biểu thức có dạng B A, B là những đa thức, B khác đa thức 0 23x − 3 x −12 a. b. c. A được gọi là tử thức (hay tử), xx3 −+45 xx2 −+27 1 B được gọi là mẫu thức (hay mẫu). Các biểu thức ở câu a,b,c được gọi là những phân thức đại số.
  6. TIẾT 21: Ph©n thøc ®¹i sè Bµi tËp 1: Trong c¸c biÓu thøc sau, biÓu thøc nµo lµ ph©n thøc ®¹i sè? 2x x2 − 2 A. B. 2 C. x + 3 0 ; ; ; 0,5xy+ x2 −1 D. E. (a lµ h»ng sè) 3y a2 + 4 x2 C¸c biÓu thøc A, B, E lµ ph©n thøc ®¹i sè.
  7. TIẾT 21: Ph©n thøc ®¹i sè Bµi tËp 2: C¸c kh¼ng ®Þnh sau ®óng hay sai? 1. §a thøc 3x - 2y + 1 lµ mét ph©n thøc ®¹i sè. Đ 2. Sè 0; 1 kh«ng ph¶i lµ ph©n thøc ®¹i sè. S 3. Mét sè thùc a bÊt k× lµ mét ph©n thøc ®¹i sè Đ
  8. Tiết 21 PHÂN THỨC ĐẠI SỐ 1. Định nghĩa : Bài tập : Các biểu thức sau đây là các Một phân thức đại số (phân thức) là A phân thức đại số đúng hay sai? Hãy biểu thức có dạng B điền đúng(Đ) hoặc sai (S) vào ô trống. A, B là những đa thức, B khác đa thức 0 A được gọi là tử thức (hay tử), Biểu thức Đúng Sai B được gọi là mẫu thức (hay mẫu). Chú ý: ay)2− 1 - Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1. b)6 - Một số thực a bất kì cũng là một phân thức 0 c) - Số 0, số 1 cũng là những phân thức đại số. 23xy− 12− x d) 0 e)0 12− x f ) x x −1 2ab+ g) c
  9. TIẾT 21: Ph©n thøc ®¹i sè Cho hai đa thức x + 2 và y -1. Bµi tËp 3: ChoHãy hai lập đa các thức phân x +thức 2 và từ y - 1. Hãy lập các phân thức từhai hai đa đathức thức trên trên ? ? CácCác phânphân thứcthức lậplập từtừ haihai đađa thứcthức trêntrên là:là: xx +2+2 yy 11 Các phân ;thức lập từ hai; đa xthức +2 trên; là:y -1 yy 11 xx +2+2 x +2 y - 1 ; ; x +2 ; y -1 y - 1 x +2
  10. TIẾT 22: Ph©n thøc ®¹i sè Cho hai đa thức x + 2 và y -1. Bµi tËp 4: H·y biÓuHãy diÔnlập các th¬ng phân cña thức phÐp từ chia (x2 + 2x + 3) : (x+1)hai d íiđa d¹ng thức ph©ntrên ? thøc ®¹i sè? CácCác phânphân thứcthức lậplập từtừ haihai đađa thứcthức trêntrên là:là: xx2 ++23 xx +2+2 (x2 + 2 xyy + 3) : (1 x1 + 1) = Kết quả: ; ;x +1 x +2 ; y -1 yy 11 xx +2+2
  11. Tiết 21 PHÂN THỨC ĐẠI SỐ 1. Định nghĩa : Một phân thức đại số (phân thức) là A biểu thức có dạng B Như chúng ta đã biết: A, B là những đa thức, B khác đa thức 0 A được gọi là tử thức (hay tử), Hai phân số a và c gọi B được gọi là mẫu thức (hay mẫu). Chú ý: b d - Mỗi đa thức cũng được coi như là bằng nhau nếu a. d = b. c một phân thức với mẫu thức bằng 1. - Một số thực a cũng là một phân thức -Số 0, số 1 cũng là phân thức đại số. 2) Hai phân thức bằng nhau Hai phân thức A và C gọi là bằng nhau B D nếu A.D = B.C. AC = nếu A.D=B.C BD
  12. Tiết 21 PHÂN THỨC ĐẠI SỐ 1. Định nghĩa : Một phân thức đại số (phân thức) là Ví dụ : A x −11 biểu thức có dạng B = A, B là những đa thức, B khác đa thức 0 xx2 −+11 A được gọi là tử thức (hay tử), B được gọi là mẫu thức (hay mẫu). Chú ý: - Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1. - Một số thực a cũng là một phân thức -Số 0, số 1 cũng là phân thức đại số 2) Hai phân thức bằng nhau Hai phân thức A và C gọi là bằng nhau B D nếu A.D = B.C. AC = nếu A.D=B.C BD Ví dụ:
  13. TIẾT 21: Ph©n thøc ®¹i sè 1. §Þnh nghÜa: 2. Hai ph©n thøc b»ng nhau A C = nÕu A.D = B.C B D 3x 2 y x ?3 Cã thÓ kÕt luËn = hay kh«ng? 6xy3 2y 2
  14. TIẾT 21: Ph©n thøc ®¹i sè x x2 + 2x ?4 XÐt xem hai ph©n thøc vµ cã b»ng nhau kh«ng? 3 3x + 6 Gi¶i Ta có: x.(3x + 6) = 3x2 + 6x x.(3x + 6) = 3.(x2 + 2x) 3.(x2 + 2x) = 3x2 + 6x x x2 + 2x = 3 3x + 6
  15. TIẾT 21: Ph©n thøc ®¹i sè 3x + 3 ?5 B¹n Quang nãi r»ng: = 3 3x cßn b¹n V©n th× nãi: 3x + 3 x + 1 = Theo em, ai nãi ®óng? 3x x Gi¶i B¹n V©n nãi ®óng. V×: (3x + 3).x = 3x2 + 3x (3x + 3).x = 3x.(x + 1) 3x.(x + 1) = 3x2 + 3x 3x + 3 x + 1 = 3x x
  16. TIẾT 21: Ph©n thøc ®¹i sè 3x + 3 B¹n Quang nãi r»ng: = 3 3x 3x + 3 x + 1 cßn b¹n V©n th× nãi: = 3x x Theo em, ai nãi ®óng? Gi¶i B¹n Quang nãi sai. V×: (3x + 3).1 = 3x + 3 (3x + 3).1 3x.3 3x.3 = 3x2 3x + 3 3 3x
  17. A C §Ó xÐt xem hai ph©n thøc vµ cã b»ng nhau B D kh«ng ta lµm như sau: Bước 1: XÐt A.D vµ B.C Bước 2: So s¸nh vµ kÕt luËn A C + NÕu A.D = B.C th× = B D A C + NÕu A.D B.C th× B D
  18. Phân số thường được sử dụng nhiều trong cuộc sống thường ngày của chúng ta Chẳng hạn: 3 quả cam 4 1 quãng đường AB 3 A B
  19. Phân số thường được sử dụng nhiều trong cuộc sống thường ngày của chúng ta. CònCùng phânvới các thức biểu đạithức số đại thì số sao?khác, phân thức được sử dụng nhiều trong các ngành khoa học. Chẳng hạn như: Các công thức tính các đại lượng vật lý và hóa học: S Công thức tính số mol m Công thức tính vận tốc: v = n = t M V n = 22,4 Rs. Công thức tính điện trở suất = t
  20. Phân số thường được sử dụng nhiều trong cuộc sống thường ngày của chúng ta. Cùng với các biểu thức đại số khác, phân thức được sử dụng nhiều trong các ngành khoa học. Chẳng hạn như: Các các phương trình về quỹ đạo của các hành tinh
  21. Phân số thường được sử dụng nhiều trong cuộc sống thường ngày của chúng ta. Cùng với các biểu thức đại số khác, phân thức được sử dụng nhiều trong các ngành khoa học. Chẳng hạn như: Các các phương trình về quỹ đạo của các hành tinh Quỹ đạo chuyển động của trái đất xung quanh mặt trời có dạng hình e líp, xy22 có phương trình dạng +=1 ab22
  22. Phân số thường được sử dụng nhiều trong cuộc sống thường ngày của chúng ta. Cùng với các biểu thức đại số khác, phân thức được sử dụng nhiều trong các ngành khoa học. NHƯ VẬY Toán học không khô khan và ít mang tính thực tế như một số người vẫn thường nghĩ. Sự thật là toán học rất phong phú và sinh động, nó có vai trò rất quan trọng đối với đời sống con người và sự phát triển của nền văn minh nhân loại nó là một hành trang hữu ích để đi đến những ước mơ và hứa hẹn nhiều điều thú vị nếu sau này.
  23. Tiết 21 PHÂN THỨC ĐẠI SỐ 1. Định nghĩa : Một phân thức đại số (phân thức) là HƯỚNG DẪN VỀ NHÀ: A biểu thức có dạng B A, B là những đa thức, B khác đa thức 0 • Học thuộc định nghĩa phân thức A được gọi là tử thức (hay tử), và định nghĩa hai phân thức bằng B được gọi là mẫu thức (hay mẫu). nhau. Chú ý: • Làm các bài tập 1, 2, 3 (sgk tr 36). - Mỗi đa thức cũng được coi như một phân thức với mẫu thức bằng 1. • Ôn lại tính chất cơ bản của phân - Một số thực a cũng là một phân thức số đã học ở lớp 6. -Số 0, số 1 cũng là phân thức đại số 2) Hai phân thức bằng nhau Hai phân thức A và C gọi là bằng nhau B D nếu A.D = B.C. AC = nếu A.D=B.C BD
  24. Tiết 21 PHÂN THỨC ĐẠI SỐ 3. Luyện tập Bài tập hoạt động nhóm: x22−3 x + 2 2 x − 6 x + 4 Chứng tỏ rằng: = 36 Giải: Ta có: • (x2 – 3x + 2).6 = 6x2 – 18x + 12 • 3.(2x2 – 6x + 4) = 6x2 – 18x + 12 => (x2 – 3x + 2).6 = 3.(2x2 – 6x + 4) x22−3 x + 2 2 x − 6 x + 4 Vậy = 36
  25. TIẾT HỌC ĐẾN ĐÂY TẠM DỪNG CẢM ƠN QUÝ THẦY, CÔ VỀ DỰ !