Bài giảng môn Hình học Khối 8 - Chương 1, Bài 9: Hình chữ nhật

ppt 30 trang buihaixuan21 3290
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng môn Hình học Khối 8 - Chương 1, Bài 9: Hình chữ nhật", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptbai_giang_mon_hinh_hoc_khoi_8_chuong_1_bai_9_hinh_chu_nhat.ppt

Nội dung text: Bài giảng môn Hình học Khối 8 - Chương 1, Bài 9: Hình chữ nhật

  1. KHỞI ĐỘNG 1) Phát biểu tính chất của hình thang cân, hình bình bình hành?
  2. T/ c Hình thang cân Hình bình hành Cạnh Hai cạnh bên bằng nhau Các cạnh đối song song và bằng nhau Góc Hai góc kề một đáy bằng nhau Các góc đối bằng nhau Đường Hai đường chéo bằng nhau Hai đường chéo cắt nhau tại chéo trung điểm mỗi đường
  3. 2. Trong các hình sau: a. Hình nào là hình bình hành? M N G H 110o 70o 70o E Q P F Hình 1 Hình 2 K L A B O D C T Hình 3 S Hình 4
  4. 2. Trong các hình sau: a. Hình nào là hình bình hành? b. Hình nào là hình thang cân? M N G H 110o 70o 70o E Q P F Hình 1 Hình 2 K L A B O D C T Hình 3 S Hình 4
  5. A B D C Hình 4
  6. TIẾT 14 - §9. HÌNH CHỮ NHẬT
  7. - Hình chữ nhật ABCD cũng là hình thang cân, cũng là bình hành A B D C Hình 4
  8. A 2. Tính chất : B O D C T/ c Hình bình hành Hình thang cân Hình chữ nhật Cạnh Cạnh đối song song Hai cạnh bên Cạnh đối song song và bằng nhau (AB//CD vaAB=CD;̀ AD//BC và AD=BC) và bằng nhau bằng nhau. Góc -Các góc đối Hai góc kề một Bốn góc bằng nhau và mỗi góc bằng 0 ( bằng nhau đáy bằng nhau. 90 A = B = C = D ) Đường - Hai đường chéo cắt - Hai đường chéo Hai đường chéo bằng nhau và cắt chéo nhau tại trung điểm bằng nhau. nhau t i trung i m m i ng . ( mỗi đường. ạ đ ể ỗ đườ OA=OB=OC=OD)
  9. d A 1 B d2 O D C +Tâm đối xứng là giao điểm hai đường chéo. +Trục đối xứng : Hai đường thẳng nối trung điểm hai cạnh đối.
  10. THẢO LUẬN NHÓM Nhóm 1+2 :Tìm những đặc điểm riêng của hình chữ nhật về cạnh, góc, đường chéo mà hình bình hành không có. Từ đó bổ sung điều kiện để hình bình hành trở thành hình chữ nhật Nhóm 3+4 :Tìm những đặc điểm riêng của hình chữ nhật về cạnh, góc, đường chéo mà hình thang cân không có. Từ đó bổ sung điều kiện để hình thang cân trở thành hình chữ nhật Có 1 góc vuông Hình chữ Hình bình nhật hành 2 đường chéo bằng nhau Hình thang Có 1 góc vuông cân
  11. DẤU HIỆU NHẬN BIẾT HÌNH CHỮ NHẬT Có 3 góc vuông Có 1 góc vuông Có 1 góc vuông Hoặc có hai đường chéo bằng nhau
  12. Cho hình bình hành ABCD có hai A B đường chéo AC = BD .Chứng minh ABCD là hình chữ nhật O D C Có 3 góc vuông Có 1 góc vuông Có 1 góc vuông Hoặc có hai đường chéo bằng nhau
  13. Thực hành: • Kiểm tra một tứ giác có phải là một hình chữ nhật không chỉ bằng compa. Cạnh đối AB=CD A B AD=BC Đường chéo DB=AC D C Dễ thấy:Tứ giác có các cạnh đối bằng nhau là hình bình hành. Hình bình hành có hai đường chéo bẳng nhau là hình chữ nhật Dấu hiệu 4
  14. ➢ HOẠT ĐỘNG NHÓM ?3 Cho Hình 86 Hình 87 ?4 NHÓM 1;2 NHÓM 3;4 A B M C D a/ Tứ giác ABDC là hình gì? Vì a/ Tứ giác ABDC là hình gì? Vì sao? sao? b/ Tam giác ABC là tam giác gì? b/ So sánh các độ dài AM và BC. c/ Tam giác vuông ABC có AM là c/Tam giác ABC có đường đường trung tuyến ứng với cạnh huyền. Hãy phát biểu tính chất tìm trung tuyến AM bằng nửa được ở câu b/ dưới dạng một định lí. Cạnh BC. Hãy phát biểu tính chất tìm được ở câu b) dưới dạng một định lí.
  15. Định lí : Áp dụng vào tam giác: 1. Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 2. Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
  16. TRẢ LỜI NHANH Điền đúng “ Đ”; sai “S” vào ô trống . Nội dung 1. Hình chữ nhật là tứ giác có tất cả các góc bằng nhau. Đ 2.Tứ giác có hai đường chéo bằng nhau là hình chữ nhật. S 3. Hình thang có một góc vuông là hình chữ nhật. S 4. Hình thang vuông có hai đường chéo bằng nhau là Đ hình chữ nhật. 5. Hình bình hành có các cạnh đối bằng nhau là hình chữ S nhật. A 6. Độ dài x trong hình vẽ là: Đ 4 3 x = 2,5 x P B C
  17. A = B = C = D = 900
  18. Bài tập: Cho tam giác ABC có Â = 900; AB = 7cm; AC = 24cm. M là trung điểm của BC. a)Tính độ dài trung tuyến AM. b) Vẽ MH AB; MK ⊥ AC. Tứ giác AHMK là hình gì? Vì sao? A H K B C M
  19. CHÚC CÁC EM HỌC TỐT.
  20. KHỞI ĐỘNG ? Cho tứ giác ABCD (hình vẽ), khẳng định nào sau đây đúng nhất? A B D C A Tứ giác ABCD là hình bình hành.  B Tứ giác ABCD là hình thang cân.  C Cả A và B đều đúng 
  21. Cho hình bình hành ABCD có AC = BD chứng minh ABCD là hình chữ nhật A B Ta có AB//CD (vì ABCD là hình bình hành) O => ABCD là hình thang đáy AB, CD Mà AC=BD (gt) D C ABCD là hình thang cân đáy AB, CD => ADC = BCD Mà AD//BC (vì ABCD là hình bình hành) => A D C + B C D = 180 0 ( hai góc trong cùng phía ) => ADC = BCD = 900 => Hình bình hành ABCD là hình chữ nhật GSP
  22. ?2 (SGK/98) Víi mét chiÕc compa , ta sÏ kiÓm tra ®îc hai ®o¹n th¼ng b»ng nhau hay kh«ng b»ng nhau . B»ng compa, ®Ó kiÓm tra tø gi¸c ABCD cã lµ hình chữ nhËt hay kh«ng , ta lµm thÕ nµo ? A B D C AB = CD ABCD lµ hình bình hành AD = BC (Cã c¸c c¹nh ®èi b»ng nhau) Hình bình hành ABCD cã hai ®êng chÐo AC = BD nªn lµ hình chöõ nhaät.
  23. A 2. TÝnh chÊt: B O D C T/ c H×nh b×nh hµnh H×nh thang c©n H×nh ch÷ nhËt C¹nh - C¸c c¹nh ®èi song - Hai c¹nh bªn C¸c c¹nh ®èi song song vµ b»ng nhau song vµ b»ng nhau b»ng nhau. (AB//CD vaAB=CD;̀ AD//BC và AD=BC) Gãc - C¸c gãc ®èi - Hai gãc kÒ mét ®¸y Bèn gãc b»ng nhau vµ mçi gãc b»ng 900 b»ng nhau b»ng nhau. ( A = B = C = D ) §êng - Hai ®êng chÐo c¾t - Hai ®êng chÐo Hai ®êng chÐo b»ng nhau vµ c¾t nhau chÐo nhau t¹i trung ®iÓm b»ng nhau. t¹i trung ®iÓm cña mçi ®ưêng . cña mçi ®êng. ( OA=OB=OC=OD)